Questões de Matemática - Geometria - Trigonometria
1.209 Questões
A figura a seguir ilustra, no sistema de coordenadas ortogonais xOy, a situação em que uma partícula é lançada com uma velocidade inicial v0 =10 m/s no sentido positivo do eixo-+, em direção ao arco de circunferência localizado no segundo quadrante do sistema de coordenadas e cujo centro é o ponto C. A partícula passa dessa trajetória para o arco de curva no primeiro quadrante do sistema, de maneira exata na figura, α = π/3, r = 2 m e d = 4 m.
A partir dessas informações e considerando que não há atrito em toda a trajetória da partícula e que e julgue o item.
No que se refere à figura, comparando-se a parábola que a partícula irá traçar em sua trajetória no segundo quadrante do sistema de coordenadas com o ponto em que a reta pontilhada cruza o eixo-y, verifica-se que a altura máxima atingida pela partícula será inferior a 1 + 2 tg (β).
Um artesão deseja construir, em miniatura, um modelo de barco a vela. A vela, no formato de um triângulo isósceles, deve ter 7 cm de altura, conforme a figura:
Sabendo que a base da vela é perpendicular ao mastro e mede 6 cm, o ângulo θ, destacado na figura, tem tangente igual a
Uma matriz em duas dimensõesA2 ×2 é uma matriz de rotação quando a multiplicação de um par ordenado V(x, y) na forma de matriz coluna por A produz como resultado um vetor que pode ser identificado com o par ordenado cuja distância à origem é a mesma que V. Nesse contexto, seja a matriz A abaixo, em que a ∈ℝ.
Considere que a matriz A faça uma rotação por um ângulo α em um ponto P(x, y) do plano, na seguinte forma.
Então (xcos (α) + ysen(α), - xsen (α) + ycos (α)) é o ponto obtido de pela rotação de P, em torno da origem, por um ângulo α
Tendo como referência essas informações, julgue o item.
A2 = A.A é a matriz obtida quando se efetua uma rotação por um ângulo 2.α.
Uma matriz em duas dimensõesA2 ×2 é uma matriz de rotação quando a multiplicação de um par ordenado V(x, y) na forma de matriz coluna por A produz como resultado um vetor que pode ser identificado com o par ordenado cuja distância à origem é a mesma que V. Nesse contexto, seja a matriz A abaixo, em que a ∈ℝ.
Considere que a matriz A faça uma rotação por um ângulo α em um ponto P(x, y) do plano, na seguinte forma.
Então (xcos (α) + ysen(α), - xsen (α) + ycos (α)) é o ponto obtido de pela rotação de P, em torno da origem, por um ângulo α
Tendo como referência essas informações, julgue o item.
Se α = –π/2, então o ponto é rotacionado no sentido anti-horário para o segundo quadrante.
Sejam os arcos de 480° e −4π/3 rad.
No ciclo trigonométrico, esses arcos são tais que ambos estão no
Adicionar à pastas
06
Faça seu login GRÁTIS
Minhas Estatísticas Completas
Estude o conteúdo com a Duda
Estude com a Duda
Selecione um conteúdo para aprender mais: